On Linear Spaces Which May Be Rendered Complete Normed Metric Spaces

نویسنده

  • CASPER GOFFMAN
چکیده

In this paper, we obtain a characterization of linear spaces which may be normed so as to become complete, linear, normed metric spaces. In this connection, K. Kunugui and M. Fréchet have shown that every metric space S is isometric with a subset of a complete, linear, normed metric space. I t follows from our result that if the cardinal number of 5 is the limit of a denumerable sequence of cardinals, then there is no complete, linear, normed metric space isometric with S. Results on topological spaces which may be rendered linear, normed metric spaces and complete, linear, normed metric spaces have been given by A. Kolmogoroff and B. Z. Vulich. I t will be assumed that the reader is familiar with certain elementary portions of the theory of linear and metric spaces, and with transfinite cardinal and ordinal numbers. Using the generalized continuum hypothesis and normal order theorem, we prove the following:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces

In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...

متن کامل

On Best Proximity Points in metric and Banach spaces

Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Characterization of fuzzy complete normed space and fuzzy b-complete set

The present paper introduces the notion of the complete fuzzy norm on a linear space. And, some relations between the fuzzy completeness and ordinary completeness on a linear space is considered, moreover a new form of fuzzy compact spaces, namely b-compact spaces and b-closed spaces are introduced. Some characterizations of their properties are obtained.

متن کامل

Best Coapproximation in Quotient Spaces

As a counterpart to best approximation, a new kind of approximation, called best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi. In this paper, we use this coapproximation to prove some results on the existence and uniqueness of best coapproximation in quotient spaces when the underlying spaces are metric linear spaces. We shall also see how coproximinality ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007